

Komputerowe Wspomaganie Projektowania

Laboratorium Technik Komputerowych w Projektowaniu Uniwersytet Artystyczny im. Magdaleny Abakanowicz w Poznaniu

Rhino 3D. Prezentacja programu.

prowadzący: dr Agnieszka sikorska-Długaj

Poznań 2023

Spis treści:

1. Rhinoceros. Design, model, present, analyze, realize
2. Wprowadzenie
3. Przydatne informacje5
4. Zastosowanie
5. Typy obiektów
6. Cechy
7. Historia
8. Właściwości programu
9. Formaty
10. Obszar roboczy
11. Opcje Rhino
12. Materiały szkoleniowe
13. Galeria
14. Bibliografia24

1. Rhinoceros. Design, model, present, analyze, realize

Fot 1. Strona internetowa programu Rhinoceros www.rhino3d.com

"Nasi użytkownicy mają ten luksus, że nie muszą kupować aktualizacji, dopóki nie dostarczymy im czegoś, co jest dla nich naprawdę przydatne. Ponadto wszyscy obecni użytkownicy mogą być zaangażowani w proces rozwoju na każdym etapie, a nie tylko na kilka miesięcy pod koniec. Ponieważ nie zwracamy uwagi na to, co robią inne firmy CAD, polegamy na użytkownikach, którzy wyznaczają kierunek dla każdej nowej wersji"¹.

- Robert McNeel przemawiający w 2007 roku

2. Wprowadzenie

¹ The History of Rhino 3D, [w:] www. rhino3d.software, https://rhino3d.software/history-of-rhino, (dostęp: 20.02.2023), tłum. własne.

Rhinoceros to profesjonalny program 3D typu **CAD** (*ang. Computer Aided Design, pol. Komputerowe Wspomaganie Projektowania*), **CAM** (*ang. Computer Aided Manufacture, pol. Komputerowe Wspomaganie Wytwarzania*), **CAE** (*ang. Computer Aided Engineering, pol. Komputerowe Wspomaganie Prac Inżynierskich*), do tworzenia modeli 3D, dokumentacji oraz animacji.

Rhinoceros oparty jest na geometrii **NURBS** (*ang. Non-Uniform Rational Basis Spline*). Technice modelowania powstałej w latach 50-tych XX wieku w fabryce samochodów Renault, do projektowania nadwozi. Definicję **NURBS** można wyjaśnić jako *"reprezentację powierzchni obiektu przestrzennego lub płaskiego za pomocą krzywych i powierzchni parametrycznych opisywanych za pomocą równań parametrycznych i ich układów"*².

Do głównych cech NURBS należą:

- możliwość odwzorowania niemal każdego kształtu (punkty, linie proste, okręgi, elipsy, parabole, hiperbole i całkowicie swobodne krzywe)
- możliwość bezpośredniej modyfikacji kształtu za pomocą punktów kontrolnych (*ang. control points*) oraz węzłów (*ang. knots*), możliwość modyfikacji gładkości (*ang. smoothness*) i zakrzywienia (*ang. curvate*)
- możliwość odwzorowania bardzo skomplikowanych kształtów za pomocą bardzo małej ilości danych
- używany w przemyśle, charakteryzuje się łatwym i bezstratnym eksportem/importem danych między aplikacjami
- używany w edukacji, dzięki matematycznym podstawom
- 3. Przydatne informacje
- producent Robert McNeel & Associates
- nazwa potoczna programu: Rhino lub Rhino 3D

² Robert McNeel & Associates, "Szkolenie Rhinoceros dla początkujących. Certyfikowany stopien I", Bardins Sp. Z o.o. ARTC, 2017

- system operacyjny Windows / Mac
- format plików .3dm
- bezpłatna 90-dniowa pełna wersja programu dostępna na www.rhino3d.com/download/

4. Zastosowanie

- wzornictwo przemysłowe
- projektowanie biżuterii
- projektowanie jachtów
- architektura
- projektowanie graficzne

Unia Europejska Europejskie Fundusze Strukturalne i Inwestycyjne

5. Typy obiektów

- powierzchnie (ang. surfaces)
- polipowierzchnie (ang. polysurfaces)
- bryły (ang. solids)
- lekkie obiekty wytłaczane (ang. lightweight extrusion objects)
- krzywe (ang. curves)
- siatki wielokątne (ang. polygon meshes)
- inne obiekty (ang. other objects)

6. Cechy

- możliwość tworzenia obiektów 3D o dowolnych kształtach
- dokładność
- zgodność z innymi programami
- intuicyjność obsługi programu
- budowa modułowa
- małe wymagania sprzętowe
- atrakcyjna cena w stosunku do możliwości

Unia Europejska Europejskie Fundusze Strukturalne i Inwestycyjne

7. Historia

- lata 80-te początek firmy Robert McNeel & Associates
- 1992 integracja biblioteki NURBS z programem AutoCad
- 1992 AccuModel narzędzie do modelowania NURBS w AutoCad
- 1993 McNeel przejmuje rozwój AccuModel
- 1993 Sculptura oficjalnie zmienia nazwę na Rhinoceros
- 1995 Rhino v1
- 1997 dostarczono ostatnią wersję AccuModel dla AutoCada
- 2008 Grasshopper
- 2015 Rhino v5
- 2018 Rhino v6
- 2020 Rhino v7, wprowadzenie Subdivision Surface Modeling (SubD)

8. Właściwości programu

• interface użytkownika: bardzo szybka grafika 3D, możliwość dowolnej konfiguracji przestrzeni roboczej, nieograniczona liczba okien, wpisywanie komend z klawiatury, możliwość konfiguracji środkowego przycisku myszy, pasek Popup - narzędzia toolbar, pasek Popup -

najczęściej używane komendy, synchronizowanie okien roboczych, pomoc na wzór Eksplorera Windows, podgląd bitmap, podgląd plików w formacie Rhino;

Rzeczpospolita Polska

- tworzenie krzywych 3D: linia, linia łamana, okrąg, łuk, elipsa, prostokąt, wielokąt, linia śrubowa, spirala, trójkąt, TrueType tekst, interpolacja punktowa, wierzchołki kontrolne, szkic, krzywe łamane, styczne, inne;
- tworzenie krzywych 3D z powierzchni swobodnych: wcięcie, kontur, sekcja, ramka, horyzont, odbicie, linia opływowa, suma, projekcja, szkic, opcja Extract dostępna dla punktów, inne;
- edycja krzywych 3D: punkty kontrolne, ramki pomocnicze, wygładzanie, spłaszczanie, dodawanie węzłów, usuwanie węzłów, inne;
- tworzenie powierzchni swobodnych (freeform): z 3 lub 4 punktów, z 3 lub 4 krzywych, z n- krzywych płaskich lub prostokątów, wytłaczanie, liniowanie, rozciąganie wzdłuż toru, osi, układu odniesienia, z sieci krzywych, tworzenie skomplikowanych powierzchni ze zbioru niezależnych krzywych oraz inne;
- edycja powierzchni swobodnych (freeform): punkty kontrolne, dodawanie węzłów, usuwanie węzłów, dopasowywanie profili łączących, operacje logiczne (suma, różnica, iloczyn), redukcja ilości polygonów (optymalizacja), inne;
- **tworzenie brył:** sześcian, kula, cylinder, walec, stożek, elipsoida, torus, wypełnianie płaskich powierzchni otwartych, łączenie powierzchni swobodnych, TrueType tekst, inne;
- edycja brył: operacje logiczne na obiektach (suma, różnica, część wspólna);
- tworzenie siatek: płaszczyzna, sześcian, cylinder, stożek, kula, z obiektu NURBS;
- narzędzia pola edycji: kopiowanie, przesuwanie, rotacja, odbicie lustrzane, skalowanie, rozciąganie, ustawianie w linii lub w szyku, przycinanie, rozszczepianie, dzielenie na części, wydłużanie, zaokrąglanie, fazowanie, łączenie, offset, skręcanie, wyginanie, nadawanie zbieżności, ścinanie, płaszczyzna konstrukcyjna oparta na krzywej, inne;
- analiza: własności masy, najbliższy punkt, wolumen, pole powierzchni, długość oraz inne funkcje;

- **pomoce konstrukcyjne:** przyciąganie (Snap) do obiektu, punktu, siatki współrzędnych, płaszczyzny, miejsc przecięcia krzywych, toru prostopadłego; płaszczyzny konstrukcyjne, warstwy, punkty lokalizacyjne, mapy bitowe jako płaszczyzny odniesienia, inne;
- rendering i prezentacja: szybki podgląd, pełny rendering sceny w wybranej rozdzielczości, cieniowanie OpenGL, podgląd renderingu OpenGL, cieniowanie wybranych obiektów, podgląd wybranych obiektów, interfejs użytkownika BMRT (raytrace i radiosity), interfejs użytkownika POV (raytrace), inne;

Fot 4. Materiały z biblioteki Rhinoceros

9. Formaty

Obsługuje ponad 30 formatów plików CAD do importowania i eksportowania (bez dodatkowych wtyczek), m.in.:

- DWG/DXF (AutoCAD 20xx)
- IGES
- STEP
- SolidWorks SLDPRT and SLDASM

- 3ds
- STL
- OBJ
- Al
- VRML
- BMP
- uncompressed TIFF
- SketchUp

Unia Europejska Europejskie Fundusze Strukturalne i Inwestycyjne

10. Obszar roboczy

Fot 5. Obszar roboczy programu Rhinoceros v6

Istnieje wiele sposobów uzyskiwania dostępu do poleceń w Rhino – za pomocą klawiatury, menu i pasków narzędzi.

Obszar roboczy Rhino można podzielić na 10 podstawowych obszarów:

- 1. Pasek Menu (ang. Menu) polecenia programu rozmieszczone według funkcji
- 2. Pasek poleceń (ang. Command bar) obszar wprowadzania poleceń oraz ich historia
- 3. Grupy narzędzi (ang. Toolbar groups) paski narzędzi zgrupowane jako zakładki

Fot 6. Pasek Narzędzi Standard

- 4. Boczny pasek narzędzi (ang. Toolbar Sidebar) pasek narzędzi jako pasek boczny
- 5. Rzutnie (ang. Viewports) wyświetlają środowisko pracy Rhino
- 6. Tytuł rzutni i menu (ang. Viewport title and menu) nazwa rzutni, opcje wyświetlania, powiększenie/pomniejszenie okna rzutni

Fot 7. Rzutnie, Tytuły rzutni i menu

- 7. Karty rzutni (ang. Viewport tabs) umożliwia przechodzenie między rzutniami, podświetlona zakładka oznacza aktywną rzutnię
- 8. Ustawienia Osnap (ang. Osnap control) ustawienia lokalizacji obiektów Osnap
- 9. Panele (ang. Panels) zawierają zakładki z Warstwami, Właściwościami, itp.
- 10. Pasek stanu (ang. Status bar) Wyświetla bieżący układ współrzędnych, położenie kursora i jednostkę systemową. Zapewnia również szybki

dostęp do warstw i przełączników pomocy modelowania.

Podpowiedź (tooltip). Wiele ikon narzędzi ma drugie polecenie, do którego można uzyskać dostęp, klikając ikonę prawym przyciskiem myszy. Podpowiedź (*ang. tooltip*), która pojawia się po najechaniu kursorem na ikonę, informuje o tym, co robi lewy i prawy przycisk myszy.

Fot 8. Przykład podpowiedzi narzędzia Polyline (lewy klawisz myszy) i Line segments (prawy klawisz myszy).

Fot 9. Lista Paneli domyślnie dostępna w programie Rhinoceros

11. Opcje Rhino

Okno **Opcji Rhino** (*Rhino Options*) jest podzielone na dwie grupy narzędzi **Właściwości Dokumentu** (*Document Properties*) oraz **Ustawienia Rhino** (*Rhino Options*). W zakładkach Właściwości dokumentu znajdują się opcje m.in. takie jak: Ustawienia wymiarowania, Kreskowanie, Rodzaje linii, Siatka, Jednostki, itp. Właściwości dokumentu dotyczą wyłącznie ustawień bieżącego dokumentu. Ustawienia z grupy Opcji Rhino umożliwiają nam tworzenie skrótów klawiaturowych, spersonalizowane ustawienia kolorów oraz sposobu poruszania się w obszarze roboczym, pomocy rysunkowych, tworzenia kopii zapasowych, zapisywania plików tymczasowych, itp. Zmiany dokonane w Opcjach Rhino będą widoczne w każdym dokumencie Rhino.

Fot 10. Okno Opcji Rhino (Rhino Options)

12. Materiały szkoleniowe

Fot 11. Materiały szkoleniowe dostępne na stronie producenta programu Rhinoceros.

- https://www.rhino3d.com/learn/?query=kind:%20jump_start&modal=null
- http://docs.mcneel.com/rhino/6/usersguide/en-us/index.htm
- http://docs.mcneel.com/rhino/6/training-level1/en-us/Default.htm#topics/_title_page.htm%3FTocPath%3D_____1
- <u>http://docs.mcneel.com/rhino/6/training-level2/en-us/Default.htm#topics/part%200_titlepage.htm%3FTocPath%3D____1
 </u>
- https://www.rhino3d.com/download/rhino/5.0/Rhino5Level1Training
- https://www.rhino3d.com/download/rhino/5.0/Rhino5Level2Training

13. Galeria

Przykłady prac studentów:

Fot 12. Mateusz Żurowski, kierunek: Wzornictwo, I rok, II st.

Fot 13. Szymon Weremczuk, kierunek: Wzornictwo, I rok, II st.

Unia Europejska Europejskie Fundusze Strukturalne i Inwestycyjne

Fot 14. Jakub Czyż, kierunek: Wzornictwo, III rok, I st.

Fot 15. Iga Rubas, kierunek: Wzornictwo, I rok, II st.

14. Bibliografia

Robert McNeel & Associates, "Szkolenie Rhinoceros dla początkujących. Certyfikowany stopien I", Bardins Sp. Z o.o. ARTC, 2017

Źródła internetowe:

https://www.rhino3d.com/

- https://en.wikipedia.org/wiki/Rhinoceros_3D
- http://www.rhino3d.pl/opis.html
- https://www.sculpteo.com/en/glossary/rhinoceros-definition/
- https://rhino3d.software/history-of-rhino