

Rendering modelu, rozdzielczość, jakość, efekty atmosferyczne i wklejenie obiektu w zdjęcie – WYSTAWA KRZESEŁ W PLENERZE

 Wyrenderuj kilka ujęć sceny z modelami krzeseł w wysokiej rozdzielczości (min. 2000 px w poziomie).

W celu poprawy jakości renderingu zwiększ ilość próbek na rolecie ustawień renderingu [**F10**] na rolecie *Arnold Renderer*:

	Target:	Production Re	ndering Mode	•	Render					
	Preset:	No preset sele	cted	•						
	Renderer:	Arnold		▼ Save	File					
	View to Render:	Quad 4 - Pers	pective		· 🔒					
	Common Arnold I	Renderer Sys	tem AOVs	Diagnostics A	rchive					
▼ Sampling and Ray Depth										
	General	/		Min	Max					
	Total Rays Per Pixel (no lights) 117									
		Samples	Ray Depth							
	🗹 Preview (AA):									
	Camera (AA)): 3 🗘								
	Diffuse	e: 2/ +		\$ 36	36					
	Specular	r: 2 ‡		÷ 36	36					
	Transmission	1: 2 ‡		\$ 36	99					
	SSS	5:2 \$								
	Volume Indirect	t: 2 ÷								

- AA Anti-aliasing (wygładzanie, "przeciwschodkowość")
- Diffuse (to co widać w świetle... krawędź cienia)
- **Specular** (połysk)
- Transmission (transmisja, dot. obiektów przezroczystych)
- **SSS** Sub-Surface Scattering (widziane wewnątrz obiektu podświetlonego od tyłu)

2. Zapisz plik pod inną nazwą, wybierz jedno z krzeseł i usuń pozostałe. Wyrenderuj model wyłaniający się z ciemności ze snopem padającego na nie światła:

W celu ustawienia renderingu światła widzialnego przejdź do okna ustawień renderingu [**F10**] i na zakładce *Arnold Renderer*, w polu *Environment, Background & Atmosphere* wskaż puste pole: *Scene Atmosphere*. W oknie, które się wyświetli wybierz tworzenie materiału *Arnold > Atmosphere >* **Atmosphere Volume**. Przeciągnij jego nazwę z paska *Scene Atmosphere* do okna materiałów [**M**] i <u>nieznacznie</u> zwiększ wartość gęstości materiału *Density* (np. 0,003 – 0,03).

W celu dodania do mgiełki szumu do kanału *rgb_density* przypisz mapę szumu **Noise** wybraną z map typu Arnold (*Maps > Arnold > Texture > Noise*).

Uwaga! W trakcie ustawień szumu rendering w oknie ActiveShade nie odświeża się automatycznie. Przykładowe ustawienia szumu w świetle widzialnym:

		Map #23								
		* Paran	neters							
	Matorial #48	Octaves					679			
Noise	Atmosph	Lacunarit	y				1,92			
o distortion	 density	Distortion					0,1			
acunarity	eccentricity	Amplitude					9,0			
amplitude	attenuation	Coordinate Space object								
🕐 scale 🦕	 affect_camera	Scale	0,1		0,1		0,1			
offset) affect_diffuse	Offset	0,0		0,0	÷	0,0			
P time	rab density	Р	0.0		0.0	÷	0.0			
	rgb attenuation	Time					0.0			
5 color2	t	Mode			scalar		-1-			
Įį		Color 1								
		Color 2								

Map #23 (Noise)

3. Zapisz plik pod nową nazwą, usuń rendering efektów atmosferycznych [**F10**] i wyrenderuj model krzesła na tle zdjęcia – mapy HDRi¹:

Tło/ Background:

Do pustej listwy *Background* W oknie *Environment and Effects* [8] (*Rendering > Environment...*) załaduj wybrane zdjęcie tła (*Bitmap*), a następnie przeciągnij go do okna materiałów [**M**] jako klon (*Instance*).

W opcjach mapy zwróć uwagę, że współrzędne projekcji zostały ustawione na *Environ* a rodzaj mapowania (*Mapping*) *na Spherical Environment*.

¹ Mapy HDRi: <u>http://gl.ict.usc.edu/Data/HighResProbes/</u>, <u>http://www.hdrlabs.com/sibl/archive.html</u>

Ustal wyświetlanie tła w oknie perspektywy: + w menu okna widokowego > Configure Viewports > Background > Use Environment Background (Alt B).

Obracając widok w oknie perspektywy bądź zmieniając przesunięcie mapy (*Offset*) na szerokości i wysokości (*Width, Height*) dopasuj kadr w oknie renderingu. Dopasuj kąt patrzenia i usytuowanie modelu kadrze.

Jeśli mapa jest za jasna lub za ciemna dopasuj także jej wartości na rolecie *Output* w polu *RGB Level* bądź za pomocą dodatkowej mapy *Color Correct*.

Podłoga (Shadow Matte):

Płaszczyźnie podłogi przypisz materiał, który pozwoli na jej niewidoczność przy jednoczesnym wyświetlaniu cieni rzucanych na nią przez elementy sceny. W tym celu wybierz mapę z rodzaju Arnold: **Shadow Matte** (*Maps > Arnold > Surface > Shadow Matte*). Następnie wybierz materiał z rodzaju materiałów Arnold o nazwie: **Map to Material** (*Arnold > Utility > Map to Material*) i przypisz do niego stworzoną wcześniej mapę. Przypisz materiał do płaszczyzny podłogi.

Ustawienia światła Skydome i innych:

Umieszczenie mapy w polu Environment wpływa na jasność oświetlenia sceny światłem odbitym. Jest to forma światła kopuły nieba jakim w silniku Arnold jest światło *Skydome*. Aby oba elementy (tło i światło otoczenia) dobrze współpracowało, wybierz dla światła *Skydome* na rolecie *Color/Intensity* ustawienie koloru: *Texture* i przypisz tę samą mapę, która jest przypisana do tła.

Zmianie ulegną dwie rzeczy, zmieni się kolor światła emitowanego przez niebo na pasujący do koloru tła oraz w miejscach odbłysków na modelu pojawią się bardziej przekonujące odbicia mapy. Na chromowanej powierzchni będzie to widoczne najlepiej (*Physical Material > Base Color and Reflections: 0, IOR: 40*):

Agnieszka Meller-Kawa 3ds Max 2018 (Arnold)

Koniecznie dopasuj wartości wszystkich świateł użytych w scenie – ich moc (*Intensivity* i *Exposure*), kolorystykę światła i cienia, a także kierunek padania i rozmycie cienia (*Radius* źródła światła).

Zmiana intensywności światła nie wpłynie na jasność sceny, gdyż o niej decyduje jasność mapy tła, wpłynie jednak na intensywność cieni:

Kolor cienia można pobrać ze zdjęcia za pomocą kroplomierza.

W finalnym renderingu warto zwiększyć ilość próbek (*Samples*): okno ustawień renderingu [**F10**] > Arnold Renderer > ... albo/i zwiększyć ilość próbek w ustawieniach światła w polu *Rendering*. Zwiększenie ilości odbić *Ray Depth (Specular*) w ustawieniach renderingu pozwoli na odbijanie się powierzchni między sobą.

Usunięcie odbicia plamy źródła światła – w opcjach światła: Contribution > Specular: 0.

Nie wolno zapominać o zwiększeniu rozdzielczości finalnego renderingu.

Przydatne skróty:

- **F10** ustawienia renderingu
- **F9** rendering Production Mode (na bazie ustawień ActiveShade ??)
- Shift Q rendering

Dodatkowe właściwości świateł Arnold:

Modyfikatory świateł Arnold:

- Arnold Decay Filter możliwość ograniczenia zasięgu światła (Near & Far Attenuation)
- Arnold Gobo Filter gobo np. rzutnik logo:

Światło Arnold typu Mesh:

Modyfikator przypisywany do obiektów:

• Arnold Properties – pozwalający na wyłączenie cieni rzucanych przez obiekt, przyjmowania cieni i cieni własnych (*Cast Shadows*, Receive Shadows, Self Shadows).